How-To: Create A Simple OpenGL 2D Particle Fountain in C++

I was recently asked about some particle systems I’d put together, so in response, this isn’t really a “look what I’ve coded” post – instead, it’s more of a “this is an easy way to set up a particle system framework” post.

To demonstrate the setup of a particle system using OpenGL, I’ve put together some simple starter code which displays a 2D particle fountain. I was going to just dump this code as a zipped project into a reply, but then (as my wife pointed out) it would be pretty much buried in the comments, so if other people starting OpenGL coding wanted to learn the basics of particle systems my code wouldn’t be as visible. As such, I’ve made this into a separate post – and all our example code does is this:

It’s a dirt-simple effect, but what it does isn’t so important right now – it’s deliberately simple. How it does what it does is what we’ll talk about.

Looking at particle systems from a high level – you generally have to choose between two different approaches to the system as a whole:

  1. You have a fixed number of particles (i.e. you have a fixed size array of however many particles) and you reset each particle to “recycle” it, or
  2. You have a dynamic number of particles (i.e. you have a dynamically resizable array) and you destroy each particle and create a new one as required.

I’ve gone with the latter approach for this code using a vector of particles (nothing to do with Vec2/Vec3 math – just the name of resizable array kinda construct). Admittedly, there’s more overhead in the creation and destruction of particles, but on the upside you don’t get that initial rush of particles you get when using fixed size arrays and as soon as you start the program BLAM! All your particles going at once.

To demonstrate what I mean, in the video below I’ve modified the code to instantiate ALL particles up to the particle limit at once, and then as soon as a particle goes off the bottom of the screen it gets destroyed and a new particle is created. The effect of which is that you get a single big burst of particles, and then as they all get destroyed and recreated at different times they turn into a smooth flow within a couple of seconds:

If you’re using a fixed size particle array, you’ll need to implement some mechanism to delay the instantiation or “launch” of the particles – for example, you might give each particle a random framesUntilLaunch value and decrease it by 1 each frame until it gets to 0 and you can let the particle do its thing. I wrote such a delay system for some fireworks code I did a while back if you’d like to see a concrete example.

Anyways, back at this code, our main is using three main classes to encapsulate data and provide methods to manipulate it:

  • Colour4f.hpp – A class to store a colour as red/green/blue/alpha floating point values and manipulate ’em (including interpolation of colours),
  • Vec2.hpp – A templatised class to store two values as a vector (Not a resizable array this time! An actually “euclidian vector” – i.e. two values which represent a direction and magnitude). It also includes lots of overloaded operators so you can add two vectors together (“up” + “right” gives you “up-right” etc.), multiply a vector by a scalar (i.e. moving “up-right” multiplied by 10 means you’re now moving up-right ten times as fast). By templatised, I mean that you can create a Vec2 of ints, or floats, or doubles, or shorts, or whatever numeric type makes sense for your application – take a look at the source below if you want examples, and finally
  • Particle2D.hpp – A particle class which uses the above Colour4f and Vec2 classes to provide powerful movement and colour modification options in a small & easy to use package.

You can download the complete source code as a Code::Blocks project here, if you’d like: PointSprite_Particle_Fountain_2D.zip.

Note: As my OS of choice is GNU/Linux (LMDE, to be specific), the source files provided will have Linux line-endings – so you’ll need to open them with a good text editor like Notepad++ if you’re in in Windows, otherwise each file will look like a single massive block of noise!

Or, if you’d prefer to just browse the source code so you can copy and paste sections, you’ll find it all laid out below.

I love particle systems – you can do some visually stunning things with really simple code, or you can do amazing things if you take it further. Either way, I hope you have a lot of fun with them (there’s lots more particle stuff on this site if you’re looking for inspiration – try Actionscript tag for a start!) – and if you make anything cool or pretty using and you think I’ve helped – please do show me or let me know – I’ve love to see or hear about what you’ve done! =D

Also – if you make this – show me how, okay?

Cheers!

Main.cpp

Particle2D.hpp

Vec2.hpp

Colour4f.hpp

And last but not least…

Utils.hpp

Done!

2 thoughts on “How-To: Create A Simple OpenGL 2D Particle Fountain in C++”

  1. Hello again,

    Thanks for this post – it’s just what I needed (and thanks to your wife for convincing you to make it a post on its own!)
    I think the problems I was getting were a result of the wrapper libraries abstracting some of the enums a little too well. When I returned to the C++ code, it all worked exactly as you describe above. Happy days again! :)
    If I manage to create anything interesting, I’ll be sure to let you know.

    Thanks again,
    Andy

  2. So much awesomeness it blew my mind!! Thanks so much for sharing (and thanks to your wife for encouraging you to share).

Leave a Reply

Your email address will not be published.