GLFW3 Basecode with FPS Camera Controls

Basecode is funny thing – when you start a new project, do you really start from scratch? A complete blank slate? Or do you make a copy of the last project you worked on which is similar and modify it? Often, you’re going to want to start from some pre-existing functional base, but what’s stable and functional enough? Do you really want to go with a framework like Cinder or Processing to hold your code? Or go with a full-on engine like Unity or Unreal Engine 4 or some other engine?

I’m going to write a game at some point in the future, and I want to go it (almost) alone – I don’t want to be locked into someone elses constructs and patterns, or drag-and-drop functionality in which I have absolutely no idea how it works – I want to think for myself and create what’s basically my own engine, where I understand how it fits together and how each piece works. This doesn’t necessarily mean that everything needs to be worked out from first principles, but it should be possible to make all the important architectural decisions. This means that I want precise control over:

  • At least one OpenGL window, with controllable context details (preferably multiple windows with a shared projection)
  • Painless keyboard and mouse handlers
  • File handling of common types (load and use this 3D model/sound file/settings file)
  • Help with prototyping via simple drawing calls

Which brings us back to basecode being a funny thing – you get to make the architectural decisions, and live with the consequences. If you decide to go with an engine, then you’re going to learn the engine – not the fundamental technologies or aspects of the code that make the engine work. So if you grab some fantastic engine and you go:

  1. Load this spaceship model, which is made of these different materials,
  2. There’s a light which is at (1000, 200, 300) in world space (and perhaps a dozen other lights),
  3. Draw the spaceship from my (i.e the camera’s) location.

But what does that actually teach you, as a developer? How do you load the model from file? How is the lighting model applied to the vertices? Where the hell is the spaceship in relation to you, let alone the surface normals of the spaceship with regard to the light-source(s) with regard to the camera? In an engine, you don’t care – you let the engine work it out for you, and you learn nothing. Or maybe you learn the engine – which means you learn to trust someone else to think instead of you having to think for yourself.

Which finally brings us back to basecode being a funny thing… I’ve been thinking about this for weeks, and below is the OpenGL/GLFW3 basecode I’ve written to open a window, draw some grids for orientation, and allow for ‘FPS-esque’ mouse and keyboard controls. The main.cpp is listed below, which shows you how the program itself runs – everything else you’ll need to look at for yourself – but I promise you this:

  • Every single piece of this code is clear in its use and serves a purpose.
  • Every single piece of this code performs its job in the simplest, most straight forward manner possible. If the option is to be clever or readable, then I pick readable every time. Saying that, I think I used an inline if-statement once i.e. “if (raining) ? putUpUmbrella() : keepUmbrellaDown();”. Honestly, when you see it, you’ll be okay.
  • Every single piece of this code is documented to explain not only WHAT the code is doing, but (where appropriate) WHY it is doing it. When I used to work as as Subsystem Integration and Test engineer, we would write software build instructions with the goal that your Mum should be able to build the software image from the simple, accurate, non-ambiguous instructions. If you didn’t think your Mum could build it, then you re-worked the instructions until you thought that she could.

I’ll add some additional utility classes to this over time, but for now, this basecode will get a window with FPS controls up and running and display some grids via shaders for orientation – and everything should be simple, straight-forward and clear. Enjoy!

Code::Blocks projects for both Windows and Linux (libraries included for Windows) can be found here: GLFW3_Basecode_Nov_2014.7z.

Update – Feb 2015: There were issues using this code in Visual Studio 2010 as it doesn’t support strongly typed enums or the R” notation (although VS2012 onwards does), and the libraries packaged were the Code::Blocks versions (which was intended – the above version is specifically for Code::Blocks) – so here’s a modified & fully working Visual Studio 2010 version: GLFW3-Basecode-VS2010.7z.

A C++ Camera Class for Simple OpenGL FPS Controls

This is the third post of three, where we finally get to create a Camera class which encapsulates all the important properties of a camera suitable for FPS controls. I could, and indeed did, have this written to just use three floats for the camera position, three for the rotation, three for the movement speed etc – but it makes more sense to use a vector class to encapsulate those values into a single item and provide methods for easy manipulation, so that’s what I’ve done.

The end result of this is that although the Camera class now depends on the Vec3 class, the Camera class itself is now more concise and easier to use. If you don’t like the coupling you can easily break it and return to individual values, but I think I prefer it this way. Oh, and this class is designed to work with GLFW, although it could be very easily modified to remove that requirement and be used with SDL or something instead. In fact, we only ever use the glfwSetMousePos(x, y) method to reset the mouse position to the centre of the screen each frame!

Anyways, let’s look at the header first to see the properties and methods of the class:

Camera.h Header

Now for the implementation:

Camera.cpp Class

Rather than me explaining each individual piece of how to fit it together, here’s a worked example – it’s really quite easy to use:

Finally! Done! You can see a video of the first version of the FPS controls here – this code works identically, it’s just that the Camera is now in its own class, we’re using our own little Vec3 class to keep group and manipulate some values, and the whole thing works in a framerate independent manner thanks to the FpsManager class. Phew!

Cheers!

FpsManager – A C++ helper class for framerate independent movement

Update – September 2013: Fixed an issue whereby the enforceFPS function only returned the time it took to run the enforceFPS function itself because I forgot to add the frameDuration. Fixed another issue where I reset the frameCount to 1 when it should have been reset to 0. Oops…


I wrote only a few months back that I didn’t want to write another piece of FPS code, ever. But this was before I started taking framerate independent movement seriously. In my past coding I’ve just enabled VSync and been done with it – as long as the machine had enough processing capacity to perform at 60fps everything was fine, and nearly everything I wrote was so simple that it didn’t task the box too much.

However, as I’ve been working on a lot of Android code recently where the processing capacity of the device can easily vary by orders of magnitude, I’ve started thinking more that I really need to be able to cater to framerate changes gracefully. And for this, I’ve reinvented the wheel – if only to be absolutely sure in no uncertain terms about how the wheel frickn’ works.

So to put this to the test, I wrote the FpsManager class, and rewrote the camera from my old post on Simple OpenGL FPS Controls into a proper class suitable for reuse in multiple projects and capable of working in a framerate independent manner. That’s the next post…

…first things first: The FpsManager! ;-)

FpsManager.hpp

Comments? Suggestions? Think I’ve designed it badly, or quite well? Know why it works just fine (from a usability standpoint) but provides a framerate just under that requested?

Feel free to let me know in the comments below! Cheers! =D

A Simple GLFW FPS Counter

Update – September 2013: Need something that enforces a given frame rate rather than just reports the current frame rate? Try this: http://r3dux.org/2012/12/fpsmanager-a-c-helper-class-for-framerate-independent-movement/


I’m fed up of solving the same problem over and over again, so the next time I need some FPS measurements, I’m going to use this…

The Include Requirements

The Function

Usage Examples

Call any of these in your main loop…

Suggestions?

I think that’s pretty usable and clean – if you’ve got any suggestions I’d really be interested in hearing them – I simply don’t want to re-implement a FPS counter in C++ ever again.

Simple texture loading with DevIL revisited

I wrote an article a while back about loading images to use as textures in OpenGL, and in it I’d written my own single line image to texture-handle function because I couldn’t get the built-in ilutGLLoadImage function to work. Since I’ve been getting blank looks and failure to compile reports about it, I thought I’d go and take a look at it again, and this time ilutGLLoadImage seems to work just fine, so let’s document it up properly shall we?

Pre-requisites

You will need:

  • A C++ compiler of your choice (I prefer Code::Blocks)
  • Working OpenGL drivers
  • A copy of DevIL
  • A copy of GLEW (GL Extension Wrangler – to make the functionality in your OpenGL drivers availble for use)
  • A copy of GLFW (GL FrameWork – to quickly and easily set up a OpenGL context)
  • An image to load

Preparation and libraries

Create a new project in your IDE of choice, and link in the following libraries:
DevIL required libraries

You’ll have to figure out where the libraries are on your own system but these are where they are on mine, where a /usr/local/ address indicates packages I’ve build myself, /usr/lib/ indicates standard system installed packages, and no prefix uses any paths defined by the compiler (in this case /usr/ where the lib and include directories are assumed). I’ve also added /usr/local/ to the include path so that any headers in /usr/local/include/ are picked up before any in /usr/include. Yes, library paths are a pain ;)

Also, be sure that your project includes its own directory as the working directory (i.e. the directory to be in when executing) so that you can place your image (in this example, a file called abstract-image.jpg) in the main project directory and it’ll be picked up when we try to load it. The way that you specify the working directory will vary depending on the IDE you’re using, but in Code::Blocks you set it from Project | Properties | Build targets like this:

Code::Blocks Working Directory

Source Code

Create a new project with source code something like this:

End Result

If you’ve linked in the libraries and used source code like the above, you should end up with a working texture that looks something like this:
ilutGLLoadImage Example

And information regarding the image being used that looks something like this:
DevIL Image Data

I’ve attached a copy of my Code::Blocks project here for anyone who wants it.

Cheers!

Credits: The wallpaper I used as the texture in this guide is Life by N.Design Studio, which you can find here.